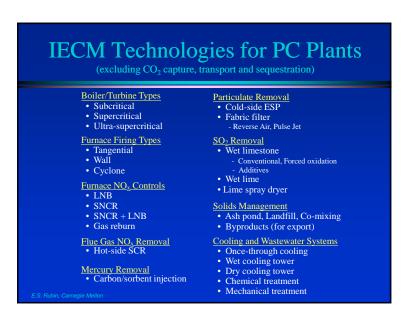
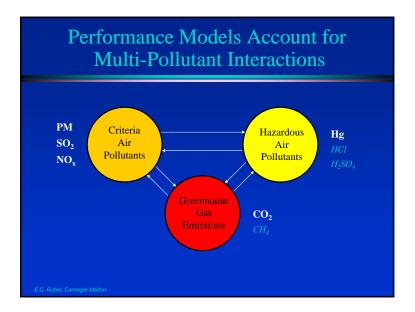


IECM Overview


Outline of Talk Overview of the IECM Recent & planned work: Pre-combustion capture Recent & planned work: Post-combustion capture Recent & planned work: Oxy-combustion capture Recent & planned work: Other activities

IECM: A Tool for Analyzing Power Plant Design Options

- A desktop/laptop computer simulation model developed for DOE/NETL
- Provides systematic estimates of performance, emissions, costs and uncertainties for preliminary design of:
 - PC, IGCC and NGCC plants
 - All flue/fuel gas treatment systems
 - CO₂ capture and storage options (pre- and post-combustion, oxycombustion; transport, storage)
- Free and publicly available at: www.iecm-online.com


ECM Modeling Approach Systems Analysis Approach Process Performance Models Engineering Economic Models Advanced Software Capabilities User-friendly graphical interface Probabilistic analysis capability Versatile input/output features

IECM Software Package Plant & Process Fuel Properties Power - Heating Value Performance **Plant** - Composition - Efficiency **Models** - Delivered Cost - Resource use **Plant Design** Graphical **Environmental** - Conversion Process User - Emission Controls **Emissions** - Solid Waste Mgmt Interface - Air, water, land - Chemical Inputs **Cost Factors Plant & Process** Plant and - O&M Costs Costs - Capital Fuel - Capital Costs - O&M **Databases** - Financial Factors - COE

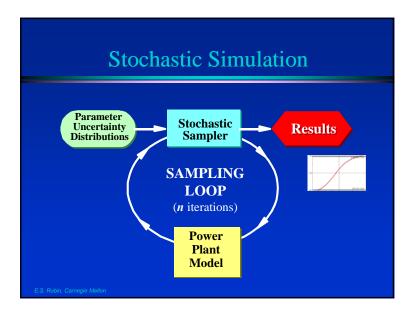
IECM Technologies for CCS • CO₂ Capture Options • *Pre-Combustion (IGCC):* Water gas shift + Selexol Chemical looping • Oxy-Combustion (PC) • *Post-Combustion (PC, NGCC):* - Amine systems (MEA, FG+) - Chilled ammonia - Membrane systems - Auxiliary NG boiler or power plant (optional) • CO₂ Transport Options • Pipelines (six U.S. regions) • CO₂ Sequestration Options Geologic: Deep Saline or Other Formations Geologic: Enhanced Oil Recovery (EOR)

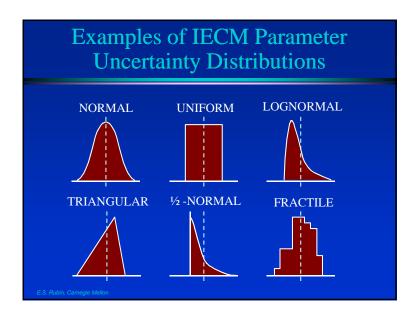
Process Performance Models

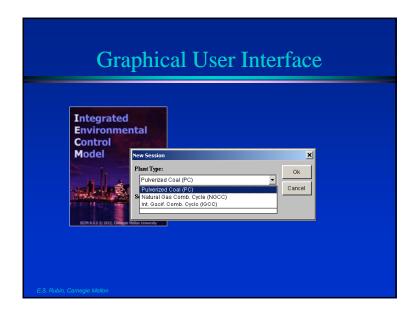
- Detailed mass and energy balances for each major component and overall plant
- For components with complex chemistry and/or heat integration schemes, multi-variate regression or other reduced-order models are derived from experimental data and detailed process models
- Approximately 10-20 performance parameters for each component technology

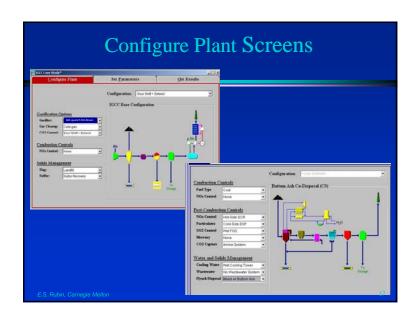
E.S. Rubin, Carnegie Mellon

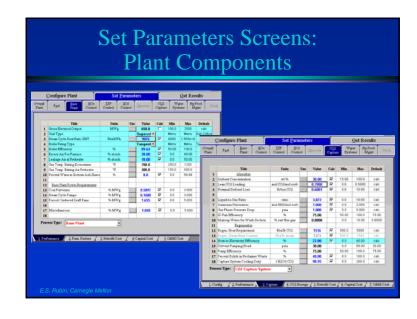
Technology Cost Models

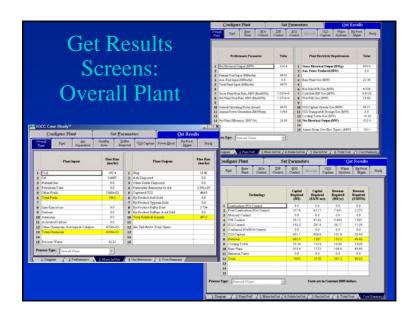

- Direct cost models for each major process area (typically 5-10 areas per technology) based on detailed engineering design studies
- Explicit links to process performance models via key parameters (e.g., flow rate, temp., pressure, etc.)
- Calculate total capital cost, variable O&M costs, fixed O&M costs and annualized cost of electricity
- Approximately 20-30 cost elements per technology

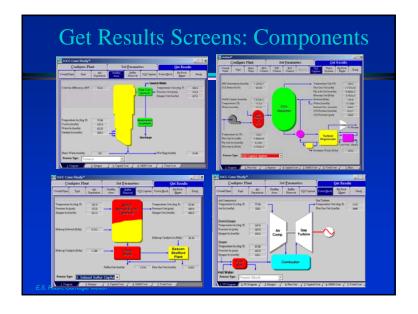

E.S. Ruhin, Camedie Mello

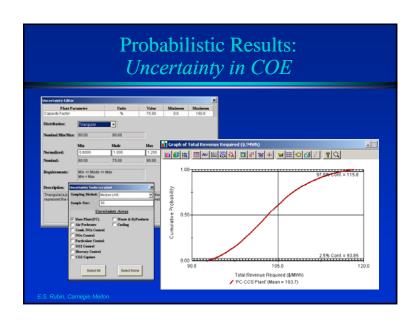

Probabilistic Capability

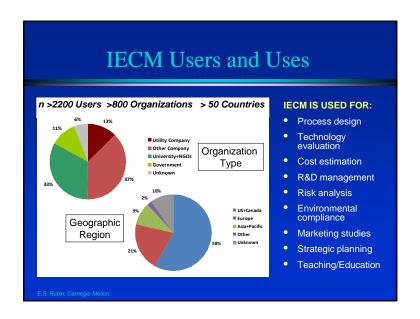

- Allows users to explicitly model and quantify the effects of uncertainty and/or variability on component and system performance, emissions and cost
- Values for user-selected parameters are specified as a probability distribution function, which is sampled using a selected method and sample size (default = median latin hypercube sampling, LHS)
- Results are displayed as a cumulative distribution function, yielding confidence intervals and probability of different outcomes for selected parameters

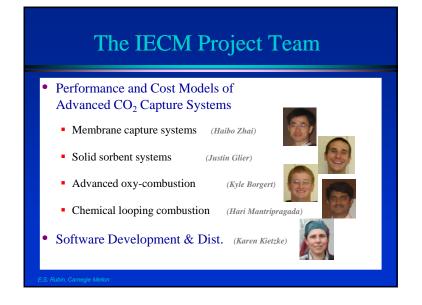

E.S. Rubin, Carnegie Mellor

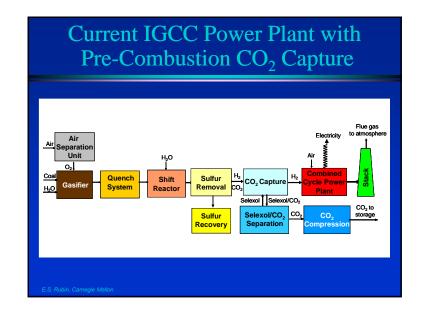


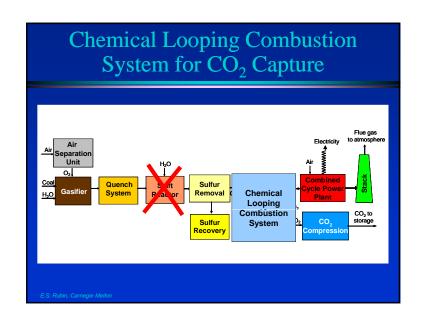


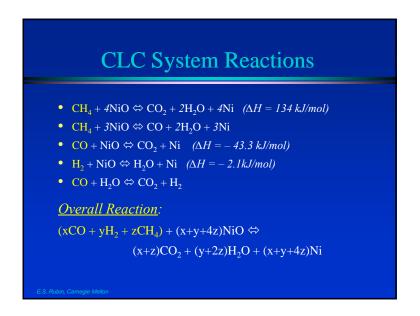


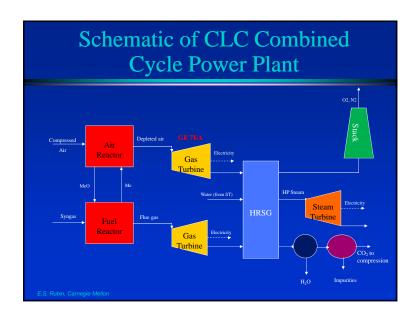


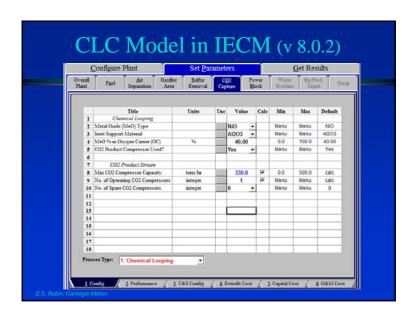


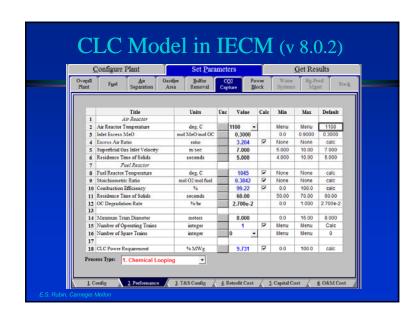

Some Questions of Interest • What technologies are available to control emissions from a given power plant system? What levels of pollution reduction are possible? • What are the associated impacts and uncertainties on:

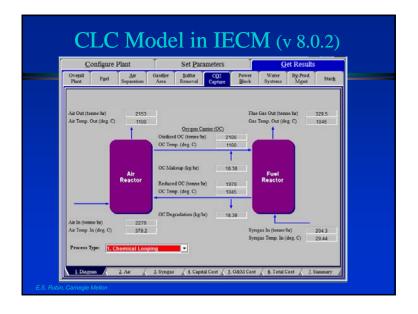

- - resource requirements
 - efficiency
 - cost?
- How *likely* is it that a given advanced technology can:
 - Achieve lower cost and/or better performance than current
 - Meet DOE goals for "high risk, high payoff" technology?

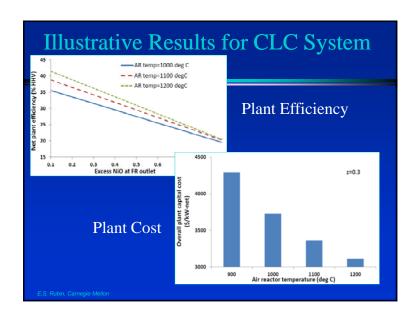



Recent and planned activities:


Pre-combustion capture







New Pre-Combustion Tasks (1)

- Building on the current CLC model we will:
 - Model two new low-cost oxygen carriers, copper and iron
 - Develop performance models for air and fuel reactors
 - Develop new performance model for GE 7EA gas turbine
 - Develop performance model for CO₂ purification system
 - Develop cost models for all the above
 - Implement and test in the IECM
 - Prepare technical documentation for all the above

E.S. Rubin, Carnegie Mellor

IECM Work Plan for FY2014

- New pre-combustion system and capture technologies
 - Chemical looping systems using low-cost metal oxygen carriers
 - The GE-radiant gasification system
 - · Sorbent-enhanced water gas shift reactor system
- New post-combustion capture technologies
 - · Air-sweep membrane system
 - Calcium looping system
 - Solid sorbent system
 - Ionic liquid-based system
- New oxy-combustion system and capture technologie
 - ASU, DCC, CPU and other new or enhanced components
- Develop and test a new IECM release (v9.0) with the added technologies and capabilities above

E.S. Rubin, Carnegie Mellor

New Pre-Combustion Tasks (2)

- Implement model of a GE-Radiant gasification system (based on NETL Baseline studies)
 - Develop performance model for gasifier
 - Modified IGCC power block model
 - Develop cost models for the above
 - Implement and test in the IECM
 - Prepare technical documentation for all the above

E.S. Ruhin, Camedie Mellon

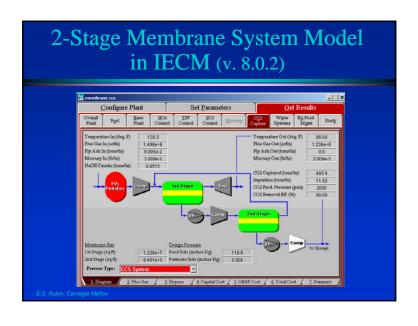
New Pre-Combustion Tasks (3)

- Develop and implement new model of a sorbent-enhanced WGS reactor system:
 - Performance models
 - Cost models
 - Implement and test in the IECM
 - Prepare technical documentation

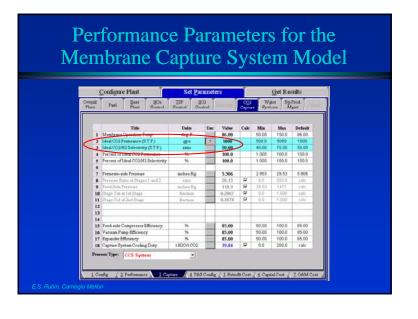
E.S. Rubin, Carnegie Mellon

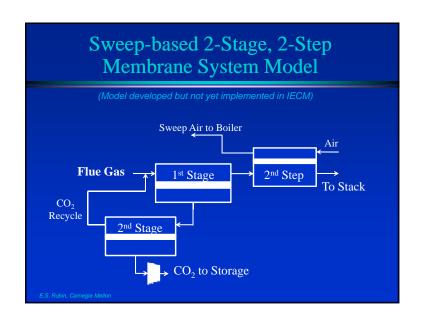
Sorbent Enhanced Shift Reactor System for CO₂ Capture Air Separation Unit System System Sorbent-Enhanced Shift Reactor System Sulfur Removal Shift Reactor System CO₂ CO₂ to storage Compression System Syste

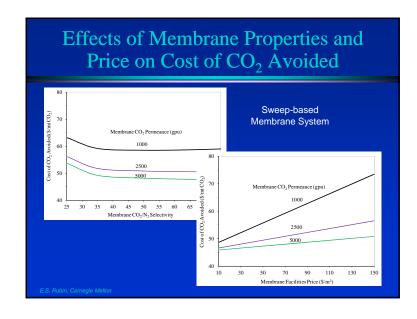
Performance Characteristics for Sorbent-Enhanced WGS

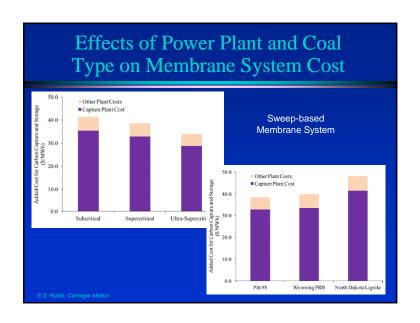

- Chemical Reactions
 - Shift reaction: CO + H_2O → CO_2 + H_2
 - Carbonation: $CaO + CO_2 \rightarrow CaCO_3$
 - Overall reaction: $CaO + CO + H_2O$ → $CaCO_3 + H_2$
 - Calcination: $CaCO_3$ → $CaO + CO_2$ (to storage)
- Carbonator temperature: 650°C
- Calciner temperature: 950°C
- Variable H₂O/CO ratio

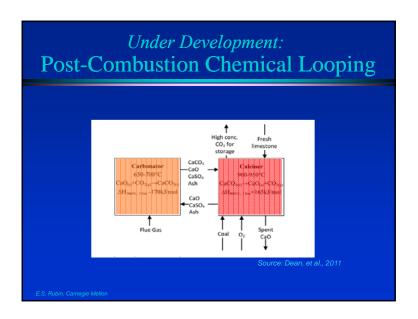
E.S. Ruhin, Carnegie Mello

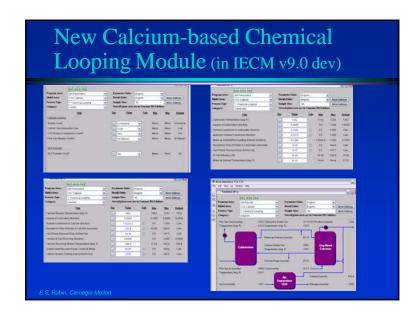

Schematic of Sorbent-Enhanced **Shift Reactor System** Heat O_2 , N_2 H₂-rich gas Syngas Carbonator Combustor Steam Electricity Gas CaO Turbine HRSG Calciner Steam CO₂ to Turbine compression Heat

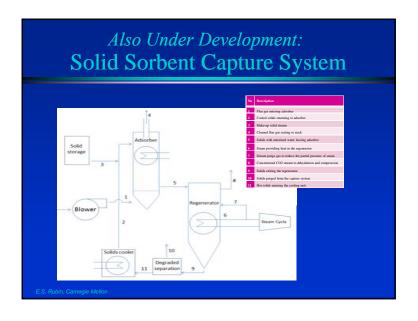

Recent and planned work:

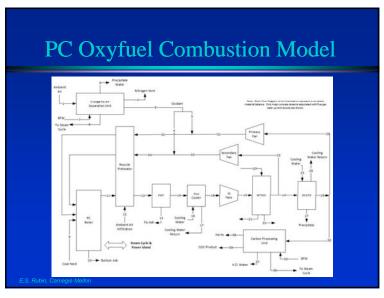

Post-combustion capture

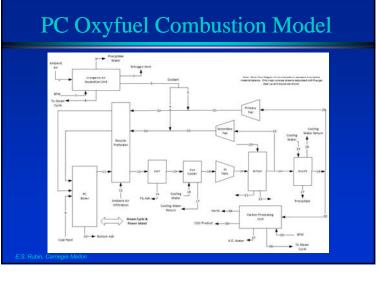



New pre-combustion system and capture technologies The GE-radiant gasification system Chemical looping systems using low-cost metal oxygen carriers Sorbent-enhanced water gas shift reactor system New post-combustion capture technologies Air-sweep membrane system Calcium looping system Solid sorbent system Ionic liquid-based system New oxy-combustion system and capture technologies ASU, DCC, CPU and other new or enhanced components Develop and test a new IECM release (v9.0) with the added technologies and capabilities above









Recent and planned work:

Oxy-combustion capture

New pre-combustion system and capture technologies
 The GE-radiant gasification system
 Chemical looping systems using low-cost metal oxygen carriers
 Sorbent-enhanced water gas shift reactor system
 New post-combustion capture technologies
 Air-sweep membrane system
 Calcium looping system
 Solid sorbent system
 Ionic liquid-based system
 New oxy-combustion system and capture technologies
 ASU, DCC, CPU and other new or enhanced components
 Develop and test a new IECM release (v9.0) with the added technologies and capabilities above

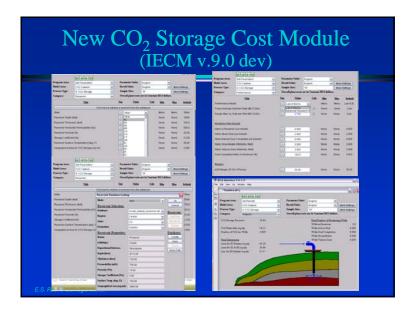
Carbon Processing Unit • New generalized model to handle a wide variety of inlet flue gas compositions • Second law calculations used to determine the minimum separation energy as performance baseline **Carbon Processing**

Air Separation Unit

- Updated performance and cost models:
 - Are functions of oxidant flow rate, purity, and delivery pressure
 - Include cooling water consumption for main air compressor
 - Include main air compressor water generation from ambient humidity removal prior to cold box

Recent and planned work:

Other activities


IECM Work Plan for FY2014

- New pre-combustion system and capture technologies
 - The GE-radiant gasification system
 - Chemical looping systems using low-cost metal oxygen carriers
 - Sorbent-enhanced water gas shift reactor system
- New post-combustion capture technologies
 - Air-sweep membrane system
 - Calcium looping system
 - Solid sorbent system
 - Ionic liquid-based system
- New oxy-combustion system and capture technologies
 - ASU, DCC, CPU and other new or enhanced components
- Develop and test a new IECM release (v9.0) with the added technologies above plus other new capabilities

E.S. Rubin, Carnegie Mellon

2013 IECM-Related Publications

- Borgert, K.J., & Rubin, E. S. (2013). Oxyfuel combustion: technical and economic considerations for the development of carbon capture from pulverized coal power plants. *Energy Procedia*, 37:1291–1300.
- Glier, J.C. & Rubin, E. S. (2013). Assessment of solid sorbents as a competitive postcombustion CO2 capture technology. Energy Procedia, 37:65-72.
- Mantripragada, H.C. & Rubin, E. S. (2013). Chemical Looping for Pre-combustion CO2 Capture - Performance and Cost Analysis. Energy Procedia, 37:618–625.
- Versteeg, P., Oates, D.L., Hittinger, E. & Rubin, E.S. (2013). Cycling coal and natural gasfired power plants with CCS. Energy Procedia, 37:618–625.
- Versteeg, P., Zhai, H. and Rubin, E.S., Comparative Assessments of Advanced Amine and Ammonia Systems for Post-combustion CO₂ Capture. 2013 Carbon Capture Utilization & Sequestration, May, 2013, Pittsburgh, PA.
- Zhai, H., & Rubin, E. S. (2013). The Effects of Membrane-based CO2 Capture System on Pulverized Coal Power Plant Performance and Cost. Energy Procedia, 37:1117–1124.
- Zhai, H., & Rubin, E. S. (2013). Techno-Economic Assessment of Polymer Membrane Systems for Postcombustion Carbon Capture at Coal-Fired Power Plants. *Environmental Science & Technology*, 47(6), 3006-3014.
- Zhai, H., & Rubin, E. S. (2013). Comparative Performance and Cost Assessments of Coaland Natural-Gas-Fired Power Plants under a CO2 Emission Performance Standard Regulation. *Energy & Fuels*. 27(8):4290-4301.

